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Abstract. We have investigated the ground state phase diagram of the 1D AF spin- 1
2

Heisenberg model
with the staggered Dzyaloshinskii-Moriya (DM) interaction in an external uniform magnetic field H . We
have used the exact diagonalization technique. In the absence of the uniform magnetic field (H = 0), we
have shown that the DM interaction induces a staggered chiral phase. The staggered chiral phase remains
stable even in the presence of the uniform magnetic field. We have identified that the ground state phase
diagram consists of four Luttinger liquid, staggered chiral, spin-flop, and ferromagnetic phases.

PACS. 75.10.Jm Quantized spin models – 75.10.Pq Spin chain models

1 Introduction

The effect of an external magnetic field on the quantum
properties of the 1D antiferromagnetic (AF) spin- 1

2 model
has attracted much interest in recent years. Experimen-
tal and theoretical studies of this system have revealed a
plethora of quantum fluctuation phenomena, not usually
observed in higher dimensions. The Hamiltonian of this
model in a uniform magnetic field (H) on a periodic chain
of N sites is given by

Ĥ =
N∑

j=1

[
J
−→
S j · −→S j+1 − HSx

j

]
, (1)

where J > 0 is the exchange coupling and H is a uniform
magnetic field. Theoretically, in the absence of the exter-
nal magnetic field, H = 0, the exact solution is given by
the Bethe ansatz [1]. The spectrum is gapless and in the
ground state, the system is in the Luttinger liquid phase,
where the decay of correlations follow a power law. When
a uniform magnetic field is applied the spectrum of the
system remains gapless until the critical field Hc = 2J .
Here a phase transition of the Pokrovsky-Talapov type [2]
occurs and the ground state becomes a complete ordered
ferromagnetic state [3].

The progress in the experimental front is achieved by
introduction of high-field neutron scattering studies and
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synthesis of magnetic quasi-one dimensional systems. In
many cases experimental data deviate significantly from
the theoretical predictions based on the pure isotropic AF
Heisenberg model in the uniform magnetic field [4–10].
These deviations are due to anisotropies, most notably
the Dzyaloshinskii-Moriya (DM) anisotropy [11,12]. The
Hamiltonian of this model is written as

Ĥ =
∑

j

[
J
−→
S j · −→S j+1 + (−1)j−→D · (−→S j ×−→

S j+1) − HSx
j

]
,

(2)
where

−→
D is the DM vector and the direction of this vec-

tor will be chosen along the y axis,
−→
D = (0, D, 0). In

actual systems, the direction of the
−→
D vector is fixed by

the microscopic arrangement of atoms and orbitals. Since
the DM interaction breaks the fundamental SU(2) sym-
metry of the isotropic Heisenberg interactions, it is at the
origin of many deviations from pure Heisenberg behav-
ior. Such anisotropy induces qualitatively different effects.
In particular, in the 1D AF spin- 1

2 model with the DM
interaction a gap is opened in the energy spectrum and
scales as ∆ ∼ (DH)

2
3 in contrast with the pure Heisen-

berg case (Eq. (1)). Theoretically, using bosonization tech-
niques Oshikawa and Affleck [13] explained the observed
scaling behavior of the energy gap. They have shown that
in the presence of the staggered DM interaction along the
chain, an applied uniform field

−→
H also generates an effec-

tive staggered magnetic field
−→
h ∝ −→

D ×−→
H . The staggered

http://dx.doi.org/10.1140/epjb/e2008-00141-x
http://www.epj.org


216 The European Physical Journal B

magnetic field for H = 0 produces an AF ordered (Néel
order) ground state and induces a gap in the spectrum of
the model it is scaled as h

2
3 .

For the higher-dimensional cases there is a theoreti-
cal expectation [13–15] that the field dependence of one
of the gaps should be ∆ ∼ (DH)

1
2 . Fouet et al. also

studied [15] the gap-induced by the staggered magnetic
field at the saturation uniform field Hc = 2J . Using field
theoretical arguments and density matrix renormalization
group (DMRG) method, they found that the gap scales
as ∆(Hc) ∼ D

4
5 . In a very recent work, this scaling be-

havior is clarified by using exact diagonalization Lanczos
results [16]. Also, it was shown that in the case of the
2D frustrated dimer singlet spin systems, a magnetic field
induces staggered magnetization [17].

It should be noted that, most of the studies have
excluded from consideration the quantum effects associ-
ated with the DM interaction [13,14,18–20]. In a recent
work [21], the effect of an external magnetic field on the
2D AF Heisenberg model with DM interaction is stud-
ied. The dependence of the quantum corrections on the
DM interaction is investigated. It is shown that the ef-
fect of the external field on the gap can be predicted by
investigating the on-site magnetization of the model. On
the other hand, the interplay of DM interactions and an
external magnetic field in spin- 1

2 dimers is studied [22].
It is shown that the staggered magnetization of an iso-
lated dimer has a maximum close to one-half the polar-
ization, with a large maximal value of ∼0.35 in the limit
of very small DM interaction. They have also investigated
the effect of the inter-dimer coupling in the context of
ladders with DMRG calculations. However the interplay
of the DM interaction on the ground state properties of
the 1D AF spin- 1

2 Heisenberg model is much less stud-
ied. Since the integrability of the model will be lost in the
presence of the DM interaction, very intensive studies are
needed.

In this paper, we present our numerical results ob-
tained on the low-energy states of the 1D AF spin- 1

2
Heisenberg model with the staggered DM interaction (D)
in an external uniform magnetic field (H). We study the
mutual effect of a uniform magnetic field and DM interac-
tion on the ground state phase diagram of the model. In
particular, we apply the modified Lanczos method to diag-
onalize numerically finite chains. Using the exact diagonal-
ization results, we calculate the spin gap, the magnetiza-
tion, the staggered magnetization, the staggered chirality
and various spin-structure factors as a function of the uni-
form magnetic field (H) and DM interaction (D). Based
on the exact diagonalization results, we obtain the ground
state magnetic phase diagram of the model showing the
Luttinger liquid, the staggered chiral, the spin-flop, and
the ferromagnetic phases. We denote by “ferromagnetic
phase” the phase with the magnetization parallel to the
external magnetic field as only nonvanishing order param-
eter.

The outline of the paper is as follows: in Section 2
we present our numerical results of the exact diagonaliza-
tion calculations on the ground state properties of the AF

Heisenberg chain with the DM interaction. In Section 3 we
investigate the effect of a uniform magnetic field on the
ground state properties of the model. Finally we conclude
and summarize our results in Section 4.

2 In the case of H = 0

In this section we explain the behavior of the model in the
absence of the uniform magnetic field (H = 0). Classically,
the effect of a staggered DM interaction is interesting. The
DM interaction makes it energetically favorable for the
spins to stay in the plane perpendicular to the direction of−→
D (x-z plane). Without the “J” term, the DM interaction
makes the spins in different sublattices to be under a θ = π

2
angle to each other. Thus at H = 0, in the ground state
of the model (2) spins lie in the x-z plane (easy plane).

On the other hand, Nersesyan et al. predicted [23] that
in the anisotropyc (easy-plane) AF spin- 1

2 chain with suffi-
ciently strong frustrating next-nearest-neighbor coupling,
a phase with a broken parity appears, which is character-
ized by the nonzero value of the chirality

χα
j ≡ 〈(−→S j ×−→

S j+1)α〉, (3)

where α denotes (x, y, z) and the notation 〈...〉 represent
the expectation value at the lowest energy state. How-
ever, two different types of the chiral ordered phases,
gapped and gapless were found [24,25]. In order to ex-
plore the nature of the spectrum and the ground state
phase diagram of the model, we have used the modified
Lanczos method [26,27] to diagonalize numerically finite
(N = 12, 14, ..., 24) chains. The energies of the few lowest
eigenstates were obtained for chains with periodic bound-
ary conditions.

We have calculated numerically the staggered chiral
order parameter 1

N

∑
j(−1)jχy

j and the staggered chiral
correlation function defined as

Cy =
1
N

N∑

n=1

(−1)n〈χy
j χy

j+n〉. (4)

Lanczos results lead to χ = 0 for any value of the DM vec-
tor D, because in a finite system no symmetry breaking
happens. In Figure 1 we have plotted the staggered chiral
correlation function along the “y” axis, Cy , as a function
of DM vector D for different chain lengths N = 12, 16, 20.
As can clearly be seen, the staggered chiral correlation
function Cy , increases with increasing D, which shows
that the DM interaction suppresses the quantum fluctua-
tions in the x-z plane and induces a staggered chiral phase
in the ground state phase diagram of the model. Intro-
ducing a DM interaction, the SU(2) rotational symmetry
breaks and a quantum phase transition happens in the
ground state phase diagram of the model. It is important
to note that due to the profound effect of quantum fluctua-
tions the chirality does not saturate. We have also checked
the excitation energies of the three lowest levels as a func-
tion of D. We have considered the excitation gap in the
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Fig. 1. The staggered chiral correlation function at H = 0
plotted as a function of the DM vector D. The results reported
for different chain lengths N = 12, 16, 20 and J = 1. In the
inset, the value of the staggered chiral correlation function Cy

is shown versus D for the pure DM interaction (H = 0 and
J = 0) and chain length N = 20.

system as the difference between the first excited state and
the ground state. We have found that a gap opens in the
presence of the DM vector D. In the inset of Figure 1, the
staggered chiral correlation function Cy has been plotted
as a function of D for the pure DM interaction (H = 0
and J = 0) and chain length N = 20. It shows that in
the absence of Heisenberg interaction (J = 0) and Zee-
man term (H = 0), the staggered chiral order is governed
by D > 0.

Thus, in the absence of a DM interaction, the ground
state of the system is in the gapless Luttinger liquid phase
with a power-low decay of correlations. Adding a DM in-
teraction to the isotropic Heisenberg model develops a
gap. The ground state then has the long-range staggered
chiral order in the y direction.

3 In the case of H �= 0

In this section we study the effect of a uniform mag-
netic field on the ground state phase diagram of the 1D
AF spin- 1

2 Heisenberg model with DM interaction. As we
mentioned, in the absence of the uniform magnetic field
(H = 0) and DM interaction (D = 0), the spectrum is
gapless. The ground state is in the Luttinger liquid phase.
By applying a uniform magnetic field H , the SU(2) sym-
metry of the pure Heisenberg model reduces to a U(1)
symmetry corresponding to a rotation around the mag-
netic field direction (x axis). The spectrum remains gap-
less until a critical saturation field Hc = 2J . As soon as
a staggered DM interaction with a

−→
D vector not parallel

to the uniform magnetic field (H) is introduced, the ro-
tational symmetry in spin space is completely lost. The
only symmetry that remains is the mirror symmetry with
respect to the x-y plane (the plane containing the uniform
magnetic field and the

−→
D vector). As a consequence, the

Fig. 2. The uniform magnetization Mx as a function of ap-
plied magnetic field H for N = 20 chain for different values of
the anisotropy DM vector D = 0.0, 0.1, 0.5, 1.0. The value of
J = 1 is considered.

staggered magnetization per site must lie in the z direc-
tion (the direction perpendicular to the plane defined by
the uniform magnetic field and the

−→
D vector), while the

uniform magnetization per site is in the field direction.
If the

−→
D vector is parallel to the uniform magnetic field,

the U(1) rotational symmetry is still present. Thus, the
staggered magnetization is identically zero. In following
we show that the quantum phase transitions can be eas-
ily observed from the numerical calculations of the small
systems.

The symmetry breaking considerations suggest that an
insight into the nature of different phases can be obtained
by studying the magnetization

Mα =
1
N

∑

j

〈Sα
j 〉, (5)

and the staggered magnetization

Mα
st =

1
N

∑

j

(−1)j〈Sα
j 〉, (6)

and the spin correlation functions. The static spin struc-
ture factor at momentum q is defined as

Sαα(q) =
∑

n

eiqn〈Sα
j Sα

j+n〉. (7)

It is known that the spin structure factors give us deeper
insight into the characteristics of the ground state. In par-
ticular we study the H-dependence and D-dependence of
different spin structure factors. To determine the proper-
ties of this model in different sectors of the ground state
phase diagram we have implemented the Lanczos algo-
rithm of the finite chains N = 12, 14, ..., 24 to calculate the
lowest energy state. We have computed the ground state
for different values of the DM vector D = 0, 0.1, 0.5, 1.0. In
Figure 2 we have plotted the magnetization along the ap-
plied uniform field, Mx versus H for chain length N = 20
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Fig. 3. The staggered magnetization along z axis, Mz
st as

a function of applied magnetic field H for N = 20 chain for
different values of the anisotropy DM vector D = 0.1, 0.5, 1.0.
The value of J = 1 is considered.

and different values of the anisotropy D. It can be seen,
that for the D = 0, due to the effect of the quantum
fluctuations in finite sizes the magnetization remains zero
for small values of the uniform magnetic field H . For
H > Hc = 2J the magnetization saturate. This is in agree-
ment with results obtained within theoretical approaches.
Due to the quantum fluctuations, in the presence of D
there is no sharp transition to the saturation value of the
magnetization. When D �= 0, the magnetization develops
as soon as the magnetic field is switched on, only reaching
saturation asymptotically in the limit of infinite field. We
mentioned that at the H = 0 the staggered DM interac-
tion causes the spins stay in the x-z plane. In this case,
the effect of the uniform magnetic field decreases the de-
generacy of the ground state energy.

In Figure 3 we have also plotted the staggered magne-
tization along the z axis Mz

st, as a function of the uniform
magnetic field H . The results reported for a chain length
N = 20 and different DM vectors D = 0.1, 0.5, 1.0. It
shows in complete agreement with the theoretical results
of the effective Hamiltonian [13] and symmetry breaking
considerations, by applying a uniform field H , a profound
Néel order in the z direction induces. Which shows that
there is long range spin-flop order along z axis. The oscil-
lations of Mz

st at finite N for small values of DM vector
D, are the result of level crossing between ground state
and excited states of the model. There is also a maxi-
mal value for the staggered magnetization per site, around
∼0.3. This value is of the order of the maximal value
of the isolated dimer, and it depends relatively weakly
on D. The inset of Figure 3 shows the staggered magne-
tization along the “z” axis versus the uniform magnetic
field H at DM vector D = 0.5 and different chain lengths
N = 12, 16, 20, 24. It can be seen that the maximal value
of the staggered magnetization is independent of the sys-
tem size. On the other hand, we have also investigated,
Szz(q = π) as a function of the uniform field H for dif-
ferent DM vectors. We have found that, there is a trend
toward staggered magnetization along “z” axis for H > 0.

Fig. 4. The value of the staggered chiral correlation func-
tion along y axis, Cy at the fixed different DM vectors D =
0.1, 0.5, 1.0 versus the uniform magnetic field H for (a) J = 0
and (b) J �= 0(J = 1). The results reported for a chain length
N = 20.

Which confirms that the ground state of the model has the
Néel long range order along the “z” axis, which is known
as the spin-flop phase.

An additional insight into the nature of different
phases can be investigated by studying the staggered chi-
ral correlation function Cy . In this case we study the mag-
netic field dependence of the function Cy for several val-
ues of the DM vector. In Figure 4a we have shown the
field dependence of the staggered chiral correlation func-
tion Cy for the pure DM interaction (J = 0) and chain
length N = 20. As we mentioned before, in the absence of
the Heisenberg interaction and Zeeman term, the ground
state of the model has the long-range staggered chiral or-
der along the y direction. It can be clearly seen, that the
staggered chiral phase remains stable even in the presence
of the uniform magnetic field less than some critical field.
Here a quantum phase transition occurs and the ground
state becomes a completely ordered ferromagnetic state.
Our numerical results also show that the value of the crit-
ical field depends on the DM interaction.

To obtain a complete picture of the ground state phase
diagram of the model, we have also calculated the function
Cy for the Heisenberg model with the DM interaction.
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Fig. 5. Schematic picture of the ground state phase diagram
of the 1D AF spin- 1

2
Heisenberg model with DM interaction in

an external uniform magnetic field (H).

In Figure 4b the staggered chiral correlation function is
plotted as a function of the uniform magnetic field H for
different values of the DM vector D = 0.1, 0.5, 1.0. The re-
sults reported for a chain length N = 20. As is seen from
this figure, Cy first increases versus the uniform magnetic
field H and after passing a maximum decreases. Since the
uniform magnetic field suppress the quantum fluctuations
in the x direction, thus the staggered chirality increases
up to the saturation. However, with more increasing the
magnetic field H , the staggered chirality decreases from
the saturation value in well agreement with Figure 4b.
Also, due to the quantum fluctuations, the staggered chi-
rality dose not reach to zero for large DM vectors.

Based on the symmetry analyses and numerical calcu-
lations, we expect that the ground state phase diagram of
the model (2) has been a form shown in Figure 5. Here the
ground state phase diagram of a 1D AF spin- 1

2 Heisenberg
model with the staggered DM interaction in an external
uniform magnetic field, is presented on the H-D plane.
The ground state phase diagram contains, besides the
gapless Luttinger liquid and gapped ferromagnetic (FM)
phases, the gapped staggered chiral and spin-flop phases.
The gapped staggered chiral and spin-flop phases are re-
alized only in the case of DM interaction (D > 0). Each
phase is characterized by its own type of the long-range
order: the ferromagnetic order along the magnetic field
axis in the FM phase; the Néel order along the “z” axis in
the spin-flop phase; and the staggered chiral order along
the “y” axis in the staggered chiral phase.

In principle, the DM interaction breaks the fundamen-
tal SU(2) symmetry of the pure isotropic Heisenberg inter-
actions and also U(1) symmetry of the Heisenberg model
in the presence of a uniform magnetic field. The only sym-
metry that remains is the mirror symmetry with respect
to the plane containing the uniform magnetic field and the−→
D vector (x-y plane).

4 Conclusions

In this paper, we have investigated the ground state phase
diagram of the 1D AF spin- 1

2 Heisenberg model with the
staggered Dzyaloshinkii-Moriya interaction in an exter-
nal uniform magnetic field H . We have implemented the
modified Lanczos method to diagonalize numerically fi-
nite chains. Using the exact diagonalization results, we
have calculated the spin gap, the magnetization, the stag-
gered magnetization, the staggered chirality and various
spin-structure factors as a function of the uniform mag-
netic field and DM interaction. In the absence of the uni-
form magnetic field H = 0, we have shown that the DM
interaction induces the staggered chiral phase. We have
also found that a gap opens in the spectrum of the model.
Thus, we have concluded that the gapped staggered chiral
ordered phase appears in the ground state phase diagram
of the 1D AF spin- 1

2 Heisenberg model for D > 0. We
have identified that the application of a uniform magnetic
field induces a spin-flop phase in the ground state phase
diagram of the model. Also, the staggered chiral phase re-
mains stable even in the presence of the uniform magnetic
field. Finally, we have shown that the ground state phase
diagram consists of four Luttinger liquid, ferromagnetic
(FM), staggered chiral and spin-flop phases.

M.R.H. Khajehpour, J. Abouie, R. Jafari, M. Maleki and F.
Mohammad-Rafiee are thanked for helpful discussions.
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